
 Chapter 13: Recursion 359

13 Recursion

In computer programs, it is frequently necessary for sections of program code to be repeated. We

have seen how this can be done using loop structures:

 If a section needs to be repeated a definite number of times, for example: to input a

temperature for each day of the week, then a FOR … TO … DO loop can be used:

 for (int day = 1; day <= 7; day++)

{

 //lines of code to be repeated

}

 If a section needs to be repeated until some condition is met, for example: to enter

purchases until the user has completed their shopping, then a WHILE … DO loop is used:

 while (finishedShopping == false)

 {

 //lines of code to be repeated

 }

In this chapter we will examine a different approach to repeating sections of a program, using a

technique called recursion.

Recursion implies that another version of something is happening within itself. Imagine that you are

looking at a computer. On the screen is a picture of the same computer, which has a picture of the

same computer on its screen, and so on … all the way down!

If a computer problem involves another version of something happening within itself, then

recursion can be used to find a solution.

360 Java Programming for A-level Computer Science

To illustrate how recursion works in a program, consider a simple example:

In mathematics, a factorial is a total produced by multiplying together all the integers

from 1 up to some specified value. For example:

 factorial 4 = 1 * 2 * 3 * 4

 = 24

A computer program is required which will calculate factorials.

Let us consider the problem of finding factorials in a bit more detail:

 factorial 4 = 1 * 2 * 3 * 4

 factorial 3 = 1 * 2 * 3

 factorial 2 = 1 * 2

 factorial 1 = 1

We can therefore consider the problem of finding factorial 4 as the sequence:

 factorial 4 = (factorial 3) * 4

 factorial 3 = (factorial 2) * 3

 factorial 2 = (factorial 1) * 2

 1

We can spot a pattern here. Suppose that we need to find the factorial of a number N:

 If N = 1, then the answer is 1

 If N is bigger than 1, then the answer for factorial N can be found by finding the factorial of

the number one less than N, then multiplying:

 factorial N = factorial (N - 1) * N

This could be written in Java as a method with the general structure:

 getFactorial (N)
 {

if (N == 1)
{
 result = 1;
 }
 else
 {
 result = N * getFactorial(N - 1);
 }

 }

If the required factorial N is 1, then we have an immediate result of 1, and the method can end.

If the required factorial N is a number greater than 1, then the method will run getFactorial() again

inside itself to find the factorial of N-1. When this answer comes back, it can be multiplied by N to

give the final result for the problem.

 Chapter 13: Recursion 361

We can now produce the program to calculate factorials.

Begin a new project in the standard way. Close all previous projects, then set up a New Project.

Give this the name factorial, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the factorial project, and select New / JFrame

Form. Give the Class Name as factorial, and the Package as factorialPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add components to the form:

 A spinner. Give this the name spinNumber.

 A button with the caption'calculate'. Rename the button as btnCalculate.

 A label 'Factorial', with a text field alongside. Rename the text field as txtOutput.

Use the Source tab to move to the program code page. Set up the overall structure for a

getFactorial() method below the factorial() method

 public factorial() {
 initComponents();

 }

 private long getFactorial(long N)

 {

 long result;

 return result;

 }

362 Java Programming for A-level Computer Science

The method has some important features. It uses an input parameter N, which specifies the

number whose factorial is to be found. It also returns an output parameter which is the result of the

calculation.

 private long getFactorial(long N)

 {

 long result;

 return result;

 }

When we call the getFactorial() method, we will give it N and it will give us back result. Factorials

can be very large numbers, so we will use the long number format, rather than smaller int variables.

Add lines of code to the method. Notice the way in which getFactorial() calls another version of

getFactorial() inside itself, but with a different input parameter N-1 instead of N.

 private long getFactorial(long N)

 {

 long result;

 if (N==1)

 {

 result=1;

 }

 else

 {

 result=N*getFactorial(N-1);

 }

 return result;

 }

Use the Design tab to move back to the form layout view. Double click the 'calculate' button to

create a method. We will add lines of code which will:

 Collect the required factorial number N from the spin component.

 Call the getFactorial() method, which in turn will call getFactorial() recursively as many

times as are necessary. The method returns result as a number in long format.

 Result is converted to text and displayed in the text field.

private void btnCalculateActionPerformed(java.awt.event.ActionEvent evt) {

 int N=(int) spinNumber.getValue();

 long result=getFactorial(N);

 String answer;

 answer=String.valueOf(result);

 txtOutput.setText(answer);

 }

input parameter

output parameter

 Chapter 13: Recursion 363

Run the program. Choose a small input number and click the 'calculate' button. Check that the

correct factorial is displayed.

Try larger numbers. You will find that factorials increase in size very rapidly due to the multiplication

sequence.

Although this was a simple program, we have discovered all the main characteristics of recursive

methods:

For a method to be recursive, it must call itself from inside the method.

A recursive method must have one or more input parameters, which can change each time

the method is called from inside itself.

If the recursive method is carrying out a calculation, then it should return a result. This will be

passed back to the previous call of the method, and eventually back to the main program.

A recursive method must have a non-recursive stopping condition. In the case of the factorial

program, this was the condition that:

 if N = 1, then result = 1

Without a non-recursive stopping condition, the method will continue to call itself until all the

available memory space in the computer has been used up, and the program crashes with a

system error.

A feature of recursive algorithms is that complex tasks can be carried out with very small amounts of

program code. This can be particularly important, for example, if programs have to be stored on a

small chip inside an electronic device. Many of the functions on an electronic calculator make use of

recursive algorithms in the program code.

364 Java Programming for A-level Computer Science

For our next project, we will look at another simple problem where recursion can be used.

A program is required which can convert positive integer (base-10) numbers into

unsigned binary numbers up to 32 bits in length. For example:

 349856728 = 0001 0100 1101 1010 0110 0011 1101 1000

Unsigned binary numbers are made up from powers of two, for example:

Adding the values represented by the binary-1 digits gives:

 128 + 32 + 16 + 4 + 1 = 181

We can analyse the programming task by choosing a simple number to convert to binary: 26.

We will divide the number by 2 as many times as possible until zero is reached, making a note of the

remainder for each division.

 26 = 2 * 13 with remainder 0

 13 = 2 * 6 with remainder 1

 6 = 2 * 3 with remainder 0

 3 = 2 * 1 with remainder 1

 1 = 2 * 0 with remainder 1

Dividing the original number 26 by two gives a remainder of zero. This means that 26 is an even

number. A value of 1 should not be include in the binary total:

We now want to know whether there are an even or odd number of twos in the original number.

We halved the number and obtained a result of 13, which tells us that there were 13 twos included

in the original number 26. This is an odd number, so a value of 2 will need to be included in the

binary total.

Continuing in the same way, we now want to know whether there are an even or odd number of

fours in the original number. When we halved the number a second time, we obtained a result of 6,

which tells us that there were 6 fours included in the number 26. This is an even number, so a value

of 4 will not be needed in the binary total.

1 0 1 1 0 1 0 1
128 64 32 16 8 4 2 1

? ? ? ? 0
16 8 4 2 1

? ? ? 1 0
16 8 4 2 1

? ? 0 1 0
16 8 4 2 1

 Chapter 13: Recursion 365

We now move on to consider the number of eights in the original number. Halving for a third time

gives 3, which tells us that there were 3 eights included in the number 26. This is an odd number, so

a value of 8 will need to be included in the binary total.

Finally we consider the number of sixteens in the original number. Halving for a fourth time gives 1,

which tells us that there is 1 sixteen included in the number 26. This is an odd number, so a value of

16 will will need to be included in the binary total.

Checking the result: 16 + 8 + 2 = 26 as required.

Consider again the sequence of divisions we carried out:

 26 = 2 * 13 remainder 0

 13 = 2 * 6 remainder 1

 6 = 2 * 3 remainder 0

 3 = 2 * 1 remainder 1

 1 = 2 * 0 remainder 1

The requirement for a recursive algorithm has been met, as the problem involves further instances

of a process occurring within the process itself. At each level, we are dividing a number by two,

finding the remainder, and passing on the divided number to the next call of the process.

Two programming functions which will be useful in developing the program are:

 DIV, which is the number of times one number divides into another, ignoring any remainder.

For example: 43 DIV 5 = 8

 MOD, which is the remainder when one number is divided by another.

For example: 43 MOD 5 = 3

If the original number to be converted to binary is N, then a design for the method is:

 convertToBinary (N)

 {

 if (N > 1)

 {

 binaryNumber = convertToBinary(N DIV 2)

 }

 add (N MOD 2) as the next bit of binaryNumber.

 return binaryNumber

 }

? 1 0 1 0
16 8 4 2 1

1 1 0 1 0
16 8 4 2 1

remainders produce

the sequence of

binary digits

366 Java Programming for A-level Computer Science

We can summarise the sequence of recursive calls which would be made for N = 26. A sequence of

calls of the convertToBinary() method are opened by recursion until the input parameter N is

reduced to 1. Each binary digit is then added to binaryNumber as the calls close in the reverse

order.

call remainder N MOD 2 binaryNumber

convertToBinary(26) 0 11010

convertToBinary(13) 1 1101

convertToBinary(6) 0 110

convertToBinary(3) 1 11

convertToBinary(1) 1 1

We are now ready to produce the program.

Begin a new project in the standard way. Close all previous projects, then set up a New Project.

Give this the name binary, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the binary project, and select New / JFrame

Form. Give the Class Name as binary, and the Package as binaryPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Add components to the form:

 A label 'Number'.

 A text field with the name txtNumber.

 A button alongside with the caption 'convert to binary'. Rename the button as btnBinary.

 A text field at the bottom of the form with the name txtBinary.

 Chapter 13: Recursion 367

Use the Source tab to move to the program code screen. We will add the recursive method

getBinary() below binary(). The method has two input parameters:

 N, which is the base-10 number which is to be converted to binary. N is divided by 2 during

each recursion, then passed on the next call of the getBinary() method.

 Output, which is the binary string that is built up as each recursive call closes. The value of

output is passed back through each previous call of getBinary(), with each method adding

another binary digit until the output string is completed.

The symbol in Java for the MOD function is '%', and the DIV function is '/'.

 public binary() {

 initComponents();

 }

 private String getBinary(long N, String output)

 {

 long result;

 int digit= (int) (N%2);

 if (N>1)

 {

 long next= (long) (N/2);

 output=getBinary(next,output);

 }

 output+=digit;

 return output;

 }

Use the Design tab to return to the form layout view, then double click the 'convert to binary'

button to create a method. Add lines of code which will:

 collect the required number N from the text field for conversion to binary,

 call the getBinary method using N as an input parameter, then

 display the output string in the txtBinary text field.

 private void btnBinaryActionPerformed(java.awt.event.ActionEvent evt) {

 long N=Integer.parseInt(txtNumber.getText());

 String output = getBinary(N, "");

 txtBinary.setText(output);

 }

Run the program. Enter some small numbers, such as 26, and check that the binary patterns are

correct.

368 Java Programming for A-level Computer Science

Enter some larger numbers.

The binary patterns produced are correct, but are not well formatted. Binary numbers are usually

displayed with groups of four digits separated by a space, for example:

 0101 1101 0111 1010

This makes it easier to read the number, and reduces the chance of a programmer making an error

when copying the binary values.

Close the program window and return to the program code page. We will add a method to improve

the formatting of the binary output. Call this from the button click method.

 private void btnBinaryActionPerformed(java.awt.event.ActionEvent evt) {

 long N=Integer.parseInt(txtNumber.getText());

 String output = getBinary(N, "");

 output = formatBinaryNumber(output);

 txtBinary.setText(output);

 }

 private String formatBinaryNumber(String input)

 {

 int L=input.length();

 int zerosNeeded=4-(L % 4);

 if (zerosNeeded<4)

 {

 for (int i=1; i<=zerosNeeded;i++)

 {

 input = "0"+ input;

 }

 }

 String output="";

 for (int i=0; i<input.length(); i++)

 {

 output = output + input.substring(i,i+1);

 if ((i%4)==3)

 {

 output += " ";

 }

 }

 return output;

 }

 Chapter 13: Recursion 369

The formatBinaryNumber() method begins by counting the number of binary digits in the number,

then adds any extra zeros necessary at the beginning to complete a group of four. For example:

 1010000 becomes 01010000

The program then works through the binary string, copying each digit in turn to produce the final

output. A space character is inserted after each fourth digit:

 01010000 now becomes 0101 0000

Run the program. Enter different numbers and check that the binary output is now in the correct

format.

For the next project, we will examine an interesting recursive problem where graphics can be used.

The Towers of Hanoi game involves a series of discs of reducing diameters, stacked on

the vertical rod A. The objective of the game is to move the discs to rod C.

 A B C

Rod B can be used as a temporary storage area, but at no time must a larger disc be placed

on top of a smaller disc.

 A B C

Develop a program to demonstrate solutions to the game for up to seven discs.

370 Java Programming for A-level Computer Science

We will begin by analysing the problem for simple cases. If only one disc is used, the disc is simply

moved from rod A to rod C.

For two discs, rod B is used as a temporary store for the smaller disc. The larger disc can then be

transferred to rod C, and the small disc moved on top of it.

For three discs, the strategy is to move two discs to rod B, transfer the largest disc to C, then move

the two discs from B to C to complete the tower.

A B C

A B C

A B C

A B C

A B C

A B C

 Chapter 13: Recursion 371

Considering the case of four discs:

move 4 discs from start to finish

 move 3 discs to spare rod

 move largest disc from start to finish

 move 3 discs to finish

 move 3 discs from start to finish

 move 2 discs to spare rod

 move largest disc from start to finish

 move 2 discs to finish

 move 2 discs from start to finish

 move 1 disc to spare rod

 move largest disc from start to finish

 move 1 disc to finish

Larger numbers of discs can be transferred using a similar strategy. We can see that versions of the

method to move a pyramid of discs from one rod to another are occurring within themselves, so the

problem can be solved by recursion.

We can now design a moveRings() recursive method. For each call of the method, we will need to

provide input parameters to indicate:

 the number of discs to be transferred

 the start position of the discs

 the finish position of the discs

 the position of the rod which can be used as a temporary store.

For example, the call:

 moveRings(3, 'A', 'B', 'C')

would move three rings from rod A to rod B, using rod C as a temporary store. A possible design for

the method is:

 moveRings(N, start, finish, spare)

 {

 if (N > 1)

 {

 moveRings(N-1, start, spare)

 }

 move largest ring from start to finish

 if (N > 1)

 {

 moveRings(N-1, spare, finish)

 }
 }

We have stopping condition when N reaches 1, as no recursive calls will be made in that case.

372 Java Programming for A-level Computer Science

We are now ready to produce the program. Begin a new project in the standard way. Close all

previous projects, then set up a New Project. Give this the name hanoi, and ensure that the Create

Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the hanoi project, and select New / JFrame

Form. Give the Class Name as hanoi, and the Package as hanoiPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Use the Design tab to move to the form layout view. Add components to the form:

 A label 'Number of rings'. Place a Spinner alongside and rename this as spinDiscs.

 A button with the caption 'Run' and the name btnRun.

 A panel. Rename this as pnlGame.

Select the panel and go to the Properties window.

 Set the background property by selecting White from the colour options.

 Set the size of the panel by setting both the maximumSize and minimumSize properties to:

 [700, 400]

 Chapter 13: Recursion 373

Use the Source tab to move to the program code screen. Add Java modules which will be needed to

produce graphics for the project.

We can use three stack data structures to record the positions of the rings on each of the rods A, B

and C as the game is being played. Add integer arrays and integer pointers for the stacks.

package hanoiPackage;

import java.awt.Graphics2D;

import java.awt.Color;

public class hanoi extends javax.swing.JFrame {

 int[] stack0 = new int[9];

 int[] stack1 = new int[9];

 int[] stack2 = new int[9];

 int pointer0;

 int pointer1;

 int pointer2;

 public hanoi() {

 initComponents();

 }

Use the Design tab to move back to the form layout view. Double click the 'Run' button to create a

method. We will begin by drawing the three rods which will hold the rings.

Add a setup() method and call this from the button click method.

 private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 setup();

 }

 private void setup()

 {

 Graphics2D g = (Graphics2D) pnlGame.getGraphics();

 g.setColor(Color.white);

 g.fillRect(0, 0, 900, 400);

 g.setColor(Color.black);

 g.drawRect(100, 300, 600, 12);

 g.drawRect(194, 100, 12, 200);

 g.drawRect(394, 100, 12, 200);

 g.drawRect(594, 100, 12, 200);

 }

374 Java Programming for A-level Computer Science

Run the program. Click the 'Run' button and check that the graphics are displayed correctly.

Close the program and return to the program code page.

We will now create a method to draw discs. This will require three parameters:

 A letter, A, B or C, identifying the rod which holds the disc.

 The position of the disc above the base of the rod. For example, in a pyramid of three discs,

the lowest disc will be at position 0, the middle disc at position 1, and the top disc at

position 2.

 The diameter of the disc. The smallest disc has size 1, the next disc is size 2, with the size

increasing by one for each larger size of disc.

 private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 setup();

 }

 private void drawDisc(char column,int height,int discSize)

 {

 Graphics2D g = (Graphics2D) pnlGame.getGraphics();

 int c=0;

 int x, y, w;

 switch (column)

 {

 case 'A': c=0; break;

 case 'B': c=1; break;

 case 'C': c=2; break;

 }

 x = 200 + 200 * c;

 y = 280 - 20 * height;

 w = 10 + 12 * discSize;

 g.setColor(Color.yellow);

 g.fillRect(x-w, y, w*2, 20);

 g.setColor(Color.black);

 g.drawRect(x - w, y, w * 2, 20);

 }

 Chapter 13: Recursion 375

The column letter is converted to a number, which is then used to calculate the position x of the

column across the screen. The height parameter is used to calculate the vertical screen coordinate y

for a rectangle representing the disc, and the discSize parameter is used to calculate the width w of

the rectangle.

Test the drawDisc() method by adding some calls to the Run button click method.

 private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {
 setup();

 drawDisc('A',0,2);

 drawDisc('A',1,1);

 drawDisc('C',0,3);

 }

Run the program, then click the 'Run' button. A stack of two discs should be shown on rod A at the

left, and a larger disc on rod C at the right.

Close the program window and return to the program code screen. We now have the necessary

graphics components available, and can begin the algorithm for playing the game.

We will represent the collections of discs on the rods using arrays. Stack0[] represents rod A,

stack1[] represents rod B, and stack2[] represents rod C. The stack elements will contain the sizes

of the rings at each level. For example, the situation shown above, with two rings on rod A and one

ring on rod C would be represented as:

2

1

3

stack0[] stack1[] stack2[]

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

<- pointer

<- pointer

<- pointer

376 Java Programming for A-level Computer Science

We can record a disc being moved from one stack to another by removing an entry from the stack at

the start location, then adding the entry to the finish stack. For example, moving the size 1 disc

from rod A to rod C would change the stack data and pointers to give:

The program can then check the stacks after each move in the game, to determine the positions and

sizes of the discs to be drawn on the screen.

At the start of the game, the program should set up the required number of discs on rod A. Return

to the 'Run' button click method and remove the drawDisc() test lines. Replace these with lines of

code which will obtain the required number of discs N from the spin component, then initialise the

stack arrays. A loop sets up the correct number of discs of decreasing size to form a pyramid on rod

A. Pointers for the other two stacks are set to zero, to indicate that rods B and C are currently

empty.

 private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 setup();

 int N = (int) spinDiscs.getValue();

 for (int j = 0; j < N; j++)

 {

 stack0[j] = N - j;

 }

 pointer0 = N;

 pointer1 = 0;

 pointer2 = 0;

 }

We now require a method to read the arrays, and use the data to display the discs in their starting

position on rod A. We will add a drawColumns() method below the 'Run' button click method.

 This method uses three loops to check each of the stack arrays in turn.

 Each entry in the stack is collected. This will be an integer number indicating the size of disc

at a particular height in the column corresponding to the array index. For example: array[0]

would contain the size of disc at the bottom level in the column, with array[1] containing

the size of disc lying on top of it at the next level up.

 The drawDisc() method is called, with parameters indicating the identification letter for the

rod, the height position up the column, and the size of disc at that position.

2

3

1

stack0[] stack1[] stack2[]

0
1
2
3
4
5
6

0
1
2
3
4
5
6

0
1
2
3
4
5
6

<- pointer

<- pointer

<- pointer

 Chapter 13: Recursion 377

 private void drawColumns()

 {

 for (int j = 0; j < pointer0; j++)

 {

 drawDisc('A', j, stack0[j]);

 }

 for (int j = 0; j < pointer1; j++)

 {

 drawDisc('B', j, stack1[j]);

 }

 for (int j = 0; j < pointer2; j++)

 {

 drawDisc('C', j, stack2[j]);

 }

 }

Add a line of code to the 'Run' button click method to call drawColumns().

 private void btnRunActionPerformed(java.awt.event.ActionEvent evt) {

 setup();

 int N = (int) spinDiscs.getValue();

 for (int j = 0; j < N; j++)

 {

 stack0[j] = N - j;

 }

 pointer0 = N;

 pointer1 = 0;

 pointer2 = 0;

 drawColumns();

 }

Run the program. Select different numbers of rings up to a maximum of 9, and check that these

are displayed on rod A when the 'Run' button is clicked.

378 Java Programming for A-level Computer Science

Close the program and return to the program code screen. We will now add a method to move

the top ring from one rod to another. Set up the method moveStack() below the 'Run' button-

click method.

This method takes the letters of the start and finish rods as input parameters. The first half of

the method removes the top ring from the start stack, then replaces its size number on the

destination stack. We finally call the drawColumns() method to redisplay the rings in their new

positions.

 private void moveStack(char start, char finish)

 {

 int ring=0;

 if (start == 'A')

 {

 pointer0--;

 ring = stack0[pointer0];

 }

 if (start == 'B')

 {

 pointer1--;

 ring = stack1[pointer1];

 }

 if (start == 'C')

 {

 pointer2--;

 ring = stack2[pointer2];

 }

 if (finish == 'A')

 {

 stack0[pointer0]=ring;

 pointer0++;

 }

 if (finish == 'B')

 {

 stack1[pointer1]=ring;

 pointer1++;

 }

 if (finish == 'C')

 {

 stack2[pointer2]=ring;

 pointer2++;

 }

 setup();

 drawColumns();

 }

We will now ready to add the recursive method which will run the game. Add a moveRings()

method after moveStack(), as shown below. As we discussed earlier, this takes four input

parameters: the number of rings to be moved, the letter identifying the starting location, the letter

identifying the destination, and the rod which can be used for temporary storage.

 Chapter 13: Recursion 379

 private void moveRings(int N, char start, char finish, char spare)

 {

 if (N > 1)

 {

 moveRings(N - 1, start, spare, finish);

 }

 moveStack(start, finish);

 if (N > 1)

 {

 moveRings(N - 1, spare, finish, start);

 }

 }

Return to the 'Run' button click method and add a line which will make an initial call of the recursive

method moveRings. We request that the required number of rings N are moved from rod A to

rod C, with rod B available for temporary use.

 pointer0 = N;

 pointer1 = 0;

 pointer2 = 0;

 drawColumns();

 moveRings(N, 'A','C','B');

 }

Run the program. Select a number of rings, then click the 'Run' button. The rings will probably

appear immediately on rod C at the right of the diagram.

The program has worked correctly, but on most computers the processing takes place so fast that

the individual moves cannot be seen. We need to introduce a time delay between moves.

380 Java Programming for A-level Computer Science

Close the program window and return to the program code screen. An easy way to provide a delay

is to make the computer waste time in carrying out some loop operation many times. Go to the end

of the moveStack() method and add a line of code to call a delay() method. Write the method

immediately underneath.

 if (finish == 'C')
 {

 stack2[pointer2]=ring;

 pointer2++;

 }

 setup();

 drawColumns();

 delay();

 }

 void delay()

 {

 double q;

 for (long i=0; i<20000;i++)

 {

 for (long z = 0; z <= 100000; z++)

 {

 q = 0;

 }

 }

 }

Run the program again. Select a number of rings, then click the 'Run' button. The sequence of

moves should now be visible as an animation. You may wish to change the speed of the moves

to suit your particular computer, by increasing or decreasing the number of repetitions which

occur in the delay loops.

 Chapter 13: Recursion 381

For the final program in this chapter, we will return to the topic of sorting data. You have already

used the Bubble Sort algorithm in several projects. We will now look at another sorting method,

called Quicksort, which operates by recursion.

Investigate the speed and efficiency of the Quicksort algorithm by creating a program

which will:

 input text documents of different lengths,

 in each case, split the document into individual words and sort the words

alphabetically by two different sorting methods:

 Quicksort

 Bubble sort

 plot a graph to compare the sorting times achieved by the two methods when

processing different lengths of text document.

To see how the Quicksort algorithm works, consider a series of words held in an array. These words

need to be sorted into alphabetical order.

one two three four five six seven eight nine ten

Quicksort takes one of the words as a comparison value, known as a pivot. We will select the word

'one' at the start of the array. The program then decides whether each of the other words would

come before () or after () the comparison value in alphabetical order.

one two three four five six seven eight nine ten

pivot

The program now makes a new copy of the data, putting all the items before the pivot value on the

left, followed by the pivot itself, then all the items after the pivot on the right.

four five eight nine one two three six seven ten
 pivot

Although the groups of data to the left and right of the pivot are not yet sorted, the pivot itself must

be in the correct position in the sequence. Any further sorting cannot alter its position.

The process is now repeated for the groups of unsorted data to the left and right of the pivot. The

new comparison values will be 'four' and 'two'.

four five eight nine one two three six seven ten

pivot pivot

Within each unsorted group, the program decides whether each word comes before or after the

pivot value.

382 Java Programming for A-level Computer Science

The words in each unsorted group are again rearranged, so that words before the pivot are listed

first, then the pivot itself, then the words which come after the pivot value in alphabetical order.

five eight four nine one three six seven ten two
 pivot pivot

The pivot values 'four' and 'two' are now in correct positions in the sequence. However, 'nine' must

also be in a correct position as it is a single item which cannot be exchanged with any other word.

The sort continues by creating pivot comparison values for the remaining unsorted groups.

five eight four nine one three six seven ten two

pivot pivot

Rearranging the remaining data items gives:

eight five four nine one six seven ten three two
 pivot pivot

The pivot items 'five' and 'three' are now in correct positions. The single item 'eight' must also be

correct. Sorting will continue with one remaining group of items.

eight five four nine one six seven ten three two
 pivot

The final rearrangement completes the sorting.

eight five four nine one seven six ten three two
 pivot

We can see that versions of the sorting method are taking place within itself, so the problem can be

solved by recursion. If a list of items L needs to be sorted, we will require three functions:

 First(L) will find the first data item in the list, which will be used as the pivot comparison

value

Before(L) will make a new list containing all the items which come before the pivot value in

alphabetical order.

After(L) will make a new list containing all the items which come after the pivot value in

alphabetical order.

An outline algorithm for the sorting process can then be written as:

 Sort (L)

 {

 sorted list = Sort(Before(L)) + First (L) + Sort(After(L))

 }

The first call of the method will split the original list into two unsorted lists, with the pivot value in

between. The Sort() method can then be called recursively to sort each of these smaller lists.

 Chapter 13: Recursion 383

We can now begin the program. Close all previous projects, then set up a New Project. Give this the

name quicksort, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the quicksort project, and select New / JFrame

Form. Give the Class Name as quicksort, and the Package as quicksortPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Use the Design tab to move to the form layout view. Add components to the form:

 A label 'Text to sort'. Place a Text Area alongside and rename this as txtInput.

 Buttons with the captions 'Quicksort' and 'Bubble sort'. Rename these as btnQuicksort and

btnBubblesort.

 A List component. Rename this as lstOutput.

384 Java Programming for A-level Computer Science

Use the Source tab to change to the program code screen. Add Java modules which will be needed

for calculating the time taken by the sort operations, and to allow output to the list component. Set

up the data model for the list.

package quicksortPackage;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import javax.swing.DefaultListModel;

public class quicksort extends javax.swing.JFrame {

 DefaultListModel listModel;

 public quicksort() {

 initComponents();

 }

Use the Design tab to return to the form layout view, then double click the 'Quicksort' button to

create a method. Add lines of code to the method. We begin by collecting the text document from

the txtInput text area, then using the split() function to separate this into an array of individual

words. The number of words found will then be displayed in the lstOutput list box.

private void btnQuicksortActionPerformed(java.awt.event.ActionEvent evt) {

 listModel = new DefaultListModel();

 String s = txtInput.getText();

 s = s.toLowerCase();

 String[] wordArray = s.split(" ");

 lstOutput.setModel(listModel);

 int n = wordArray.length;

 listModel.addElement("Number of words to sort: " + n);

 lstOutput.setModel(listModel);

 }

Run the program. Obtain a substantial amount of text data, perhaps from a Word document you

have written or from an internet article, and paste this into the text area. Click the 'Quicksort'

button. The number of words in the text should be shown in the list box.

 Chapter 13: Recursion 385

Close the program window and return to the program code screen.

We wish to time the sorting operations, so that the speeds of the Quicksort and Bubble sort

methods can be compared. To do this, the time can be printed out from the computer's clock just

before the sorting begins, and again immediately that the sorting is completed.

Add lines of code to display the time at the start of the sort operation. This can be shown very

accurately to a thousandth of a second!

 String[] wordArray = s.split(" ");

 lstOutput.setModel(listModel);

 int n = wordArray.length;

 listModel.addElement("Number of words to sort: " + n);

 DateFormat dateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

 Date date = new Date();

 String startTime= dateFormat.format(date);

 listModel.addElement("Start time: " +startTime);

 lstOutput.setModel(listModel);

 }

Run the program. Input some text and click the 'Quicksort' button. The time should be displayed.

This is in the format:

 hours : minutes : seconds . thousandths of a second

Close the program window and return to the program code screen.

Return to the 'Quicksort' button click method. We will add a call to a quicksort() method, which will

carry out the actual sort. The array of unsorted words obtained from the text will be passed to the

quicksort() method as an input parameter.

When the sorting is completed, the time can again be read from the computer's clock and displayed.

The difference in times will indicate the time taken by the sorting process.

386 Java Programming for A-level Computer Science

 listModel.addElement("Number of words to sort: " + n);

 DateFormat dateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

 Date date = new Date();

 String startTime= dateFormat.format(date);

 quicksort(wordArray);

 date = new Date();

 String finishTime= dateFormat.format(date);

 listModel.addElement("Start time: " +startTime);

 listModel.addElement("Finish time: " +finishTime);

 lstOutput.setModel(listModel);

 }

 private void quicksort(String[] wordArray)
 {

 }

The operation of the Quicksort method depends on having functions available to produce new lists

of the data items which should occupy positions before or after the pivot item. We will create these

functions, before moving on to complete the quicksort() recursive method.

Set up a findBefore() method below quicksort().

 private void quicksort(String[] wordArray)

 {

 }

 public String[] findBefore(String[] words)

 {

 int n=words.length;

 String[] list = new String[n];

 int count=0;

 for (int i = 1; i < n; i++)

 {

 if (words[i].compareTo(words[0]) < 0)

 {

 list[count]=words[i];

 count++;

 }

 }

 String[] result = new String[count];

 for (int i = 0; i < count; i++)

 {

 result[i]=list[i];

 }

 return result;

 }

 Chapter 13: Recursion 387

The operation of this method can be explained using our earlier example of sorting the names of the

number from one to ten.

We pass the unsorted collection of data to the findBefore() method as an array called wordArray.

wordArray

The method then checks the number of elements in wordArray and creates another empty array

called list with the same number of elements.

list

The method reads the first element of wordArray and uses this as the pivot comparison value. A

loop checks each remaining element of wordArray to see if it should come before the pivot value in

alphabetical order. If so, the word is copied into the next empty element of the list array.

list

The final step is to set up a result array with the correct number of elements to hold the set of

'before' words which were found, then return this to the quicksort() method as the output

parameter.

result

Add the findAfter() method below findBefore(). This is almost identical, except that the 'less than'

sign in the compareTo() function is replaced by a 'greater than' symbol.

 public String[] findAfter(String[] words)

 {

 int n=words.length;

 String[] list = new String[n];

 int count=0;

 for (int i = 1; i < n; i++)

 {

 if (words[i].compareTo(words[0]) > 0)

 {

 list[count]=words[i];

 count++;

 }

 }

 String[] result = new String[count];

 for (int i = 0; i < count; i++)

 {

 result[i]=list[i];

 }

 return result;

 }

one two three four five six seven eight nine ten

four five eight nine

four five eight nine

388 Java Programming for A-level Computer Science

We can now work on the quicksort() method itself. A design is given in the flowchart.

Y

start

input the list of items to be sorted (L)

before(L) contains

only a single item?

stop

the item is now in the correct

positon, so output it

before(L) contains

more than one item?

 open the quicksort() method again

recursively to sort the before(L) list

ouptput the pivot element first(L)

after(L) contains only

a single item?
the item is now in the correct

positon, so output it

after(L) contains more

than one item?

 get a new list of data items after(L) which

should be moved to a position after the pivot

 open the quicksort() method again

recursively to sort the after(L) list

 get a new list of data items before(L) which

should be moved to a position before the pivot

N

N

Y

N

Y

N

Y

 Chapter 13: Recursion 389

Locate the empty quicksort() method which we set up earlier. Add the lines of code to implement

the recursive procedure as shown in the flowchart above.

 private void quicksort(String[] wordArray)

 {

 lstOutput.setModel(listModel);

 String[] before = findBefore(wordArray);

 if (before.length == 1)

 {

 listModel.addElement(before[0]);

 }

 if (before.length > 1)

 {

 quicksort(before);

 }

 listModel.addElement(wordArray[0]);

 String[] after = findAfter(wordArray);

 if (after.length == 1)

 {

 listModel.addElement(after[0]);

 }

 if (after.length > 1)

 {

 quicksort(after);

 }

 }

Run the program, enter a block of text, then click the 'Quicksort' button. Scroll through the output

list to check that the words have been sorted into alphabetical order correctly.

Examine the start and finish times for the sort. You may find that the sorting operation took only a

few milliseconds.

390 Java Programming for A-level Computer Science

Close the program window and return to the NetBeans editing screen. We will now set up a Bubble

Sort method to sort the same text, so that the speeds can be compared.

Use the Design tab to move to the form layout view, then double click the 'Bubble sort' button to

create a method. The code which we will add is almost identical to the 'Quicksort' button click

method:

 private void btnBubblesortActionPerformed(java.awt.event.ActionEvent evt) {

 listModel = new DefaultListModel();

 String s = txtInput.getText();

 s = s.toLowerCase();

 String[] wordArray = s.split(" ");

 lstOutput.setModel(listModel);

 int n = wordArray.length;

 listModel.addElement("Number of words to sort: " + n);

 DateFormat dateFormat = new SimpleDateFormat("HH:mm:ss.SSS");

 Date date = new Date();

 String startTime= dateFormat.format(date);

 bubbleSort(wordArray);

 date = new Date();

 String finishTime= dateFormat.format(date);

 listModel.addElement("Start time: " +startTime);

 listModel.addElement("Finish time: " +finishTime);

 lstOutput.setModel(listModel);

 }

The button click method calls a bubbleSort() method, which we will add immediately underneath.

This uses the same algorithm as in several of our previous programs.

 private void bubbleSort(String[] words)

 {

 int n = words.length;

 Boolean swap=true;

 while (swap==true)

 {

 swap = false;

 String temp;

 for (int i = 0; i < n-1; i++)

 {

 if (words[i].compareTo(words[i + 1]) > 0)

 {

 temp=words[i];

 words[i] = words[i + 1];

 words[i + 1] = temp;

 swap = true;

 }

 }

 }

 }

 Chapter 13: Recursion 391

Some common words, such as 'and' and 'the', are likely to occur many times in the text used as test

data. To simplify the output, we will add a loop which avoids the same word being output more

than once in the alphabetical list. Add lines of code near the end of the method to do this.

 for (int i = 0; i < n-1; i++)

 {

 if (words[i].compareTo(words[i + 1]) > 0)

 {

 temp=words[i];

 words[i] = words[i + 1];

 words[i + 1] = temp;

 swap = true;

 }

 }

 }

 lstOutput.setModel(listModel);

 listModel.addElement(words[0]);

 for (int i = 1; i < n; i++)

 {

 if (words[i].compareTo(words[i-1]) !=0)

 listModel.addElement(words[i]);

 }

 }

To complete the program, use the Design tab to return to the form layout page. Select the lstOutput

list. Go to the Properties window and locate the model property. Delete the entries item1 … item 5

from the right hand column, so that the list appears empty when the program first runs.

Run the program. Enter test data and click the 'Bubble sort' button. Check that the words of the

text are correctly sorted and displayed.

You may find that sorting times are much longer for the Bubble sort in comparison to the Quicksort,

particularly for large text articles.

392 Java Programming for A-level Computer Science

Carry out experiments with different lengths of text article, up to about 30,000 words in length, and

plot the results as a graph using a spread sheet.

Sorting times for the Bubble sort should increase as a polynomial curve, whereas the times for

Quicksort are closer to linear.

On a fast computer, the Quicksort method may show very little increase in sort time as the size of

the data increases. The actual sorting method is so fast that other system processes, such as output

of the screen display, are dominating the overall sort times that we are recording.

